If it's not what You are looking for type in the equation solver your own equation and let us solve it.
X^2+X^2=244
We move all terms to the left:
X^2+X^2-(244)=0
We add all the numbers together, and all the variables
2X^2-244=0
a = 2; b = 0; c = -244;
Δ = b2-4ac
Δ = 02-4·2·(-244)
Δ = 1952
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1952}=\sqrt{16*122}=\sqrt{16}*\sqrt{122}=4\sqrt{122}$$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-4\sqrt{122}}{2*2}=\frac{0-4\sqrt{122}}{4} =-\frac{4\sqrt{122}}{4} =-\sqrt{122} $$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+4\sqrt{122}}{2*2}=\frac{0+4\sqrt{122}}{4} =\frac{4\sqrt{122}}{4} =\sqrt{122} $
| F(10)=17.5x-10 | | -70=-50y | | 86-v=178 | | 11x=2x-36 | | 268=-x+139 | | X+2=-2x+6 | | -5x+8-2(x-4)=3(x-2) | | -112+10x=86+4x | | 4-c=-1 | | (2+2(4-2))/6=4x/6+2 | | (2+2(4-2))/6=4x/6-2 | | (2+2(4-2))/6=4x/6 | | 5+x+3=11 | | -7x+-1=-2x+4 | | -6+z=5 | | 2+2(4-2)/6=4x/3 | | -7x-8=-38 | | x=2(x+2) | | 2+2(4-2)=4x/3 | | -18+1=x-7 | | 8/6(x-5)=1 | | 2(4z-3)=3(z+8) | | 5-x/3=x/2-5 | | 2(4z-3)=(3(z+8) | | 1/4p+2=4 | | x+4=9+11 | | 5x+15=8x+35 | | 13x-143=37+7x | | 1/5-2/5(5x-6)=4/7 | | -3y+1=-21 | | 6v+10=5v | | 3(127/3)-15+2(127/3)+(y)(y)=180 |